
 
Geog0111 Scientific Computing 

 
Coursework (Assessed Practical) Part B 

Instructions and marking grids 
 

P. Lewis 
p.lewis@ucl.ac.uk 

 
5th December 2022 

 
URL: https://github.com/UCL-EO/geog0111 

 
 

1. Introduction 
 

1.1 Task overview 
The coursework for Geog0111 Scientific Computing consists of two parts (Part A and Part B). The course is assessed 
entirely using these two submissions. This document describes the requirements for Part B  (50% of the total marks), 
which is due for submission on the first Monday after the start of Term 2. Part A covers data preparation and presentation, 
and part B covers environmental modelling (using the data from part A and other geospatial data). 
 
In this task, you will be writing codes to do two tasks: (i) snow data generation. Develop a function to generate a gap-
filled daily snow cover dataset for the Del Norte catchment in Colorado, USA for the years 2018 and 2019 using MODIS 
data and streamflow and temperature datasets you prepared in part A. Then, separately, demonstrate the running of the 
function and plot the datasets alongside one another: (ii) snowmelt model calibration and validation. Develop a 
function to calibrate the parameters of a snowmelt model driven by snow cover and temperature using observations of 
streamflow for one year of data for Del Norte. Develop another function to validate the model with these parameters 
against an independent year of data for the same area. Then demonstrate the running of these functions and visualise the 
results. 
 
The main coding exercises involve building a set of Python functions, then running these, passing data between the 
functions, and visualising results. a set of You must provide and run the functions that you should develop in a Jupyter 
notebook, as well as showing results in the notebook.  
 
 
1.2 Submission 
The due dates for the two formally assessed pieces of coursework are: 
 

• Part A (this piece of work):        14 Nov, 2022 (50% of final mark) - first Monday after reading week. 
• Part B (the next piece of work): 10 Jan,   2023 (50% of final mark) - first day of term 2 

 
Submission is through the usual Turnitin link on the course Moodle page. 

You must develop and run the codes in a single Jupyter notebook, and submit the work in a single notebook as a PDF 
file. As usual with coursework, you must attach a cover page declaration. 
  



2. Background 
 
 
2.1 Model background  

The hydrology of the Rio Grande Headwaters in Colorado, USA is snowmelt dominated. It varies considerably from year 
to year and may very further under a changing climate. One of the tools we use to understand monitor processes in such 
an area is a mathematical ('environmental') model describing the main physical processes affecting hydrology in the 
catchment. Such a model could help understand current behaviour and allow some prediction about possible future 
scenarios.  

In this part of your assessment you will be using, calibrating and validating such a model that relates temperature and 
snow cover in the catchment to river flow.  

We will use the model to describe the streamflow at the Del Norte measurement station, just on the edge of the catchment. 
You will use environmental (temperature) data and snow cover observations to drive the model. You will perform 
calibration and testing by comparing model output with observed streamflow data. 

	

Figure	1.	Del	Norte	station	
	
2.2.Del Norte 

Further general information is available from various websites, including NOAA. You can visualise the site Del Norte 
2E here. This is the site we will be using for river discharge data. 

 

Figure	2.	River	near	Del	Norte	station 
 
  



2.3 Model 
 
2.3.1	Model	basics	

We	will	build	a	simple	mass	balance	model	that	is	capable	of	predicting	daily	streamflow	at	some	catchment	location	
for	given	temperature	and	catchment	snow	cover.		This	defines	the	purpose	of	our	model	(how	we	will	use	it)	and	
describes	the	model	output	(daily	streamflow	QdN[t]	at	some	catchment	location)	and	drivers	(temperature	T[t]	and	
catchment	snow	cover	p[t]):	

We	will	need	2	dynamic	datasets	to	run	the	model,	given	for	samples	in	time	t:	

• T[t]:	mean	temperature	(C)	at	the	Del	Norte	monitoring	station	for	each	day	of	the	year	
• p[t]:	Catchment	snow	cover	(proportion)	

and	one	dataset	to	calibrate	and	test	the	model,	for	samples	in	time:	

• QdN[t]:	stream	flow	data	for	each	in	units	of	megalitres/day	(ML/day	i.e.	units	of	1000000	litres	a	day)	at	the	
del	Norte	monitoring	station.	

You	should	already	have	the	datasets	T[t]	and	QdN[t]	for	the	years	2016-2019	inclusive,	and	will	need	to	make	use	of	
the	datasets	for	2018	and	2019	in	this	work.	In	the	first	part	of	this	submission	we	will	deriving	the	snow	cover	data	
from	MODIS	satellite	data.	We	will	explain	this	below.	

As	we	have	noted,	you	will	be	running,	calibrating	and	testing	a	mass-balance	snowmelt	model	in	the	Rio	Grande	
Headwaters	in	Colorado,	USA.		In	such	a	model,	we	keep	track	of	the	mass	of	some	parameter	of	interest,	here	the	snow	
water-equivalent	(SWE),	the	amount	of	water	in	the	snowpack	for	the	catchment.	We	assume	the	reservoir	of	water	is	
directly	proportional	to	snow	cover	p[t]at	time	t	so:	

SWE[t] = k1 p[t]         (1) 

with	k1	a	constant	of	proportionality	relating	to	snow	depth	and	density.		

In	the	model,	we	do	not	consider	mechanisms	of	when	the	snow	appears	or	disappears	from	any	location	or	
thinning/thickening	of	the	snowpack.	Rather,	we	use	the	snow	cover	as	time	t	,	p[t],	as	a	direct	surrogate	of	the	SWE	at	
time	t.	

2.3.2	Water	release	

We	need	a	mechanism	in	the	model	that	converts	from	SWE[t]	to	flow	dQ[t],	the	water	flowing	into	the	system	from	
the	snowpack	at	time	t.	We	can	consider	this	as:	

dQ[t] = k2 m[t] SWE[t]  

      = k1 k2 m[t] p[t]   

      = k m[t] p[t]         (2) 

where	dQ[t]is	the	amount	of	water	flowing	into	the	catchment	at	time	t,	m[t]	is	a	proportion	of	the	snowpack	
assumed	to	melt	at	time	t,	and	k2	a	constant	of	proportionality	relating	to	the	proportion	of	the	SWE	that	is	available	to	
be	converted.	We	combine	the	constants	of	proportionality	so	k=k1 k2.	

You	can	imagine	the	snow	water	equivalent	SWE[t]as	a	quantity	of	snow	in	a	bucket	observed	at	time	t,	and	there	
being	some	proportion	k2	of	this	that	has	the	potential	to	melt	and	become	water	dQ[t].	You	can	think	of	there	being	a	
tap	or	valve	that	releases	that	water	into	another	bucket	at	time	t,	with	m[t]	(between	0	and	1)	being	a	measure	of	
how	much	that	valve	is	open	or	closed.	The	main	control	on	this	tap	is	temperature	at	time	t,	T[t].	In	the	simplest	
form,	this	would	be	a	switch,	so	setting	m	to	0	when	flow	is	off	(too	cold	to	melt)	and	m	to	1	when	flow	is	on	(hot	enough	
to	melt).	Practically,	we	model	the	rate	of	release	of	water	from	the	snowpack	as	a	logistic	function	of	temperature:	

m[t] = expit([T[t]-T0]/xp)        (3) 

where	expit	the	logistic	function	that	we	have	previously	used	in	phenology	modelling.	This	is	a	form	of	'soft'	switch	
between	the	two	states	(still	with	melting,	m=0,	and	melting	m=1).	If	the	temperature	is	very	much	less	than	the	
threshold	T0,	it	will	remain	frozen.	If	it	is	very	much	greater	than	T0,	there	will	be	an	amount	proportionate	to	SWE[t]	
flowing	into	the	system	on	day	t.	



	

Figure	3.	melt	rate	m[t]	for	varying	value	of	parameter	T0	
	
The	parameter,	xp	(C)	increases	the	slope	of	the	function	at	T=T0	with	increasing	xp.	So	it	can	be	used	to	modify	the	
'speed'	of	action,	or	‘sensitivity’	of	the	soft	switch.	We	will	use	a	default	value	of	xp=1.	It	is	likely	to	have	only	a	minor	
impact	on	the	modelling	results	so	we	can	use	this	assumed	value	of	the	parameter.	By	keeping	this	parameter	at	a	fixed	
value,	we	can	simplify	the	problem	you	need	to	solve	to	one	involving	a	single	parameter	to	model	the	water	release.	We	
assume	that	T0	can	be	calibrated	for	a	given	catchment.	

	

Figure	4.	melt	rate	m[t]	for	varying	value	of	parameter	xp	for	T0=0	
	
Notice	that	the	threshold	temperature	T0	is	not	really	the	temperature	at	which	melting	begins:	we	can	see	from	above	
that	for	xp=1.0,	melting	occurs	at	temperatures	above	around	T0-5C.	Also,	consider	that	the	temperature	data	we	will	
be	using	is	the	temperature	at	the	Del	Norte	station,	and	that	this	is	likely	some	degrees	higher	than	the	temperature	in	
the	mountains	where	the	snowmelt	will	be	occurring.	For	these	various	reasons,	we	would	not	expect	T0	to	be	0C,	but	
somewhat	higher,	perhaps	closer	to	10 C.		We	should	call	this	parameter	a	threshold	temperature,	rather	than	a	
‘melting	temperature’.	Notice	that	if	we	decrease	the	sensitivity	parameter	xp,	then	the	range	of	‘melting	temperatures’	
is	also	reduced,	so	we	might	expect	T0	to	decrease	with	decreasing	xp.	So,	although	changing	xp	might	have	only	a	small	
impact	on	the	result,	it	is	likely	to	have	a	correlation	with	the	parameter	T0.	

So:	

dQ[t] = k p[t] expit((T[t]-T0)/xp)      (4) 

This	is	driven	by	T[t]	and	p[t]	and	controlled	by	parameters	T0	and	to	a	lesser	extent	xp.	If	we	normalise	our	
measures,	i.e.	dQ[t]/dQmax	and	QdN[t]/QdNmax,	with	dQmax	and	QdNmax,	being	the	maximum	values	of	Q[t]	and	QdN[t]	
respectively,	then	we	can	compare	the	quantity	of	melt	water	at	time	t	with	the	measured	flow	at	the	monitoring	
station.	

In	the	figure	below,	we	see	the	normalised	modelled	melt	water	dQ[t]	(scaled)	that	corresponds	to	a	T0	of	9	C	derived	
from	datasets	T[t]	and	p[t],	alongside	the	normalised	measured	flow	QdN[t]	(scaled)	at	the	del	Norte	station.	dQ[t]	
is	remarkably	similar	to	the	flow	data	QdN[t],	but	much	noisier.	We	also	see	that	it	occurs	some	time	before	we	see	the	
water	flow	at	the	monitoring	station.	The	reason	for	this	is	that	there	is	a	'network	delay'	between	the	melt	happening	in	
the	snowpack	and	it	reaching	the	monitoring	station.	This	final	component	of	our	model	is	a	network	response	function	
(NRF)	that	models	this	delay	in	the	routing	of	the	melt	water.		
	



	

Figure	5.	Available	water	dQ[t]	for	T0=9 C	(green)	plotted	alongside	measured	flow	(black)	and	driving	data	
	

2.3.3	Flow	delay	to	the	measuring	stations	

To	be	able	to	generate	our	desired	model	output,	we	now	have	to	consider	how	this	reservoir	of	water	is	transported	to	
predict	daily	streamflow	at	some	catchment	measurement	location.	We	do	this	using	the	concept	of	a	Network	Response	
Function	(NRF).	In	this	sub-model,	we	assume	that	the	flow	from	out	reservoir	dQ[t]	to	the	catchment	measurement	
location	can	be	characterised	as	a	decay	function	after	time	t=0.	So,	some	proportion	of	the	water	released	is	
immediately	transported	to	the	station,	and	a	lesser	amount	reaches	the	next	day,	and	less	the	next	day	and	so	on.	So,	if	
we	put	a	pulse	of	water	into	the	system	we	would	measure	a	simple	decay	function.	This	pulse	response	is	the	NRF.	

	

Figure	6.	Network	Response	Function	(NRF)	as	a	function	of	time	to	f=20	days	
	
The	NRF	is	effectively	a	one-sided	smoothing	filter.	It	imparts	a	delay	on	the	signal	dQ[t]	and	smooths	it.	We	can	use	a	
function	such	as	a	one-sided	Laplace	distribution,	a	one-sided	exponential	parameterised	by	a	rate	of	decay	value	f	
(days)	to	model	the	probability	of	water	reaching	the	monitoring	station	at	time	t.	
	

Q’dN[t] = dQ[t] * L1(t/f)        (5) 
	
Where	Q’dN[t]	is	the	modelled	flow	(we	use	’for	modelled	flow	here)	output	at	the	del	Norte	station,	* is	the	
convolution	operator,	dQ[t]is	the	snowmelt	entering	the	reservoir	at	time	t,		and		L1(t/f)	is	the	NRF	response,	a	
one-sided	Laplace	(exponential)	distribution:	
 

L1(x) = exp[-x]/N | x >= 0       (6) 
    0         | 
	
with	the	normalisation	factor:	
	
 N = S L1(x) 
 
	



	
Figure	7.	Network	Response	Function	(NRF)	as	a	function	of	time	for	varying	f	

	
You	can	think	of	this	model	as	allowing	the	meltwater	that	becomes	available	at	time	t,	dQ[t],	to	be	spread	out	over	
time	when	it	reaches	the	monitoring	station.	So,	in	figure	7	for	f=10,	around	0.09	of	the	melt	water	goes	immediately	to	
the	monitoring	station,	then	less	than	that	the	next	day,	and	so	on,	until	almost	all	of	the	water	has	reached	the	station	
after	around	40	days.		The	‘spread’	of	this	then	is	controlled	by	the	parameter	f.	If	f	is	increased	to	20,		only	0.05	of	the	
water	goes	directly	to	the	station,	and	it	is	spread	out	over	a	longer	time	period.		So,	f	is	characteristic	of	the	catchment	
physical	properties	and	the	location	of	the	snow	sources	relative	to	the	monitoring	station.	We	assume	it	to	be	a	
constant	here,	something	that	can	be	calibrated	for	the	catchment	and	station.		
	
2.3.4	Model	
	
If,	for	the	moment,	we	ignore	the	parameter	xp,	then	we	can	illustrate	out	model	as	in	the	figure	below:	
	

	

Figure	8.	Model	description	
	
The	complete	model	has	three	parameters	that	control	model	behaviour:	

• the	threshold	temperature	T0	(C);	
• the	delay	parameter	f	(days)	of	the	Network	Response	Function	(NRF)		
• the	temperature	sensitivity	parameter	xp	(C)	

Summary:		

In	this	coursework,		you	must	estimate	the	two	main	parameters	(T0	and	f)	for	the	catchment	in	a	model	
calibration	stage	using	data	from	2018,	and	then	validate	the	calibrated	model	against	independent	data	from	
the	year	2019.	This	requires	you	to	compare	the	predicted	station	streamflow	Q’dN[t]	with	measured	values	
QdN[t]	in	some	optimisation	routine	using	a	model	driven	by	daily	temperature	T[t]	and	snow	cover	p[t].	
You	will	first	need	to	derive	the	estimate	of		snow	cover	for	the	two	years.	

You	can	find	code	implementing	and	running	the	model	in	notebooks/066_Part2_code.ipynb	in	the	notes.	 	



3. Coursework Detail 
 
 
3.1 Basic requirements for this submission 
 
In Part A of the assessment (that you have already completed part), you generated and visualised environmental datasets for 
daily temperature T[t] (C) and measured stream flow QdN[t] (ML/day) that we will be using in this part.  
 
These should broadly look like the data presented in Figure 5 above (for the year 2005). If you believe you have made a 
significant error in generating these data and you don’t have anything useable for this part, you should contact the course tutor 
to obtain alternative datasets. If you use these alternative data in your submission, you must indicate that you have done so. 
 
 
 
3.2 Required components 
 

• Snow data preparation [40%] 
• Model inversion [60%]     

 
Each of these parts has multiple components. 
 
3.2.1 Snow data preparation 
 
The aim of this part of the work is for you to produce datasets of snow cover for the Hydrological Unit Code (HUC code) 
catchment 13010001 (Rio Grande headwaters in Colorado, USA) using MODIS snow cover data. You should by now have 
plenty of experience of accessing and using the MODIS LAI product, and we have already come across the snow product in 
030_NASA_MODIS_Earthdata. 
 
You must provide: 
 

• A function with argument year (integer) that returns a Pandas dataframe or dictionary containing keys for day of 
year (doy) and daily catchment mean snow cover p[doy] for HUC catchment 13010001.  

• When you run it for year, it must return a gap-filled measured snow cover dataset for that year, for each day 
of the year, averaged (mean) over HUC catchment 13010001.  

• You must do the gap-filling for each pixel in the catchment along the time-axis. You should then take 
the mean of the gap-filled data over the catchment. 

• The function must be capable of deriving this information from appropriate MODIS snow cover datasets. 
• You can optionally also cache this information in a file, and read the data from that file. If you use a cache, 

you must specify a keyword to switch on- or off- the use of the cached file1. 
• Do not make use of global variables to pass information to a function: you must pass all information required 

by a function via arguments and/or keywords. 
• This gives 30 marks in total and is judged using the generic rubrik for functions provided. 

 
• Outside of this function, in a notebook cell, demonstrate the running of this function for years 2018 and 2019.  

• You must demonstrate the running of this function (with and without caching, if you implement that) in a 
notebook cell and plot graphs showing the snow cover datasets you have generated.  

• This gives 10 marks (30+10 = 40% for this section) 
 
 
3.2.2 Model inversion 
 
You should now have access to datasets for 
 

• T : mean temperature (C) at the Del Norte monitoring station for each day of the year, read from a csv file. 
• Q : stream flow data (ML/day) for each day of the year, read from a csv file. 
• p : Catchment snow cover (proportion) returned by the function developed above. 

 
for the years 2018 and 2019. You should have access to an implementation of the model in Python in the code 
notebooks/geog0111/model.py. You should import this code for use in your coursework. You do not need to 
develop it yourself. 

	
1 So, if you want to use a cache file, in the function, you might test to see if the cache file exists, and if so, read data from that. If not, 
or if you set the keyword to ignore the cache file, then you derive p[t] from the MODIS data. It is not compulsory to use a cache 
file. But if you don’t then this function must derive p[t] from the MODIS data. 



 
If, for any reason you have been able to produce these, discuss the matter with your course tutor before completing this section. 
You must NOT simply use any datasets provided with the notes without consultation. If you do use the datasets with 
permission, you must acknowledge this in your submission (not doing so constitutes plagiarism). 
 
You will need to use a LUT inversion to provide a calibration and validation of the model described above. You should be 
familiar with this approach from the material covered in the course and should use numpy to implement it. 
 
You must provide: 
 

• A calibration function with argument year (integer) that returns a dictionary or Pandas df containing the calibrated 
model parameters and the goodness of fit metric at the LUT minimum in calibration, along with appropriate datasets 
that you can use to visualise and verify the calibration results.  

• It should use a LUT approach to calibrate the 2-parameter snowmelt model presented above for year.  
• It should read the datasets T and Q from their CSV files for year, performing any necessary filtering or gap-

filling (e.g. replace NaN values).  
• It should get the snow cover dataset p for year from the function developed for snow data preparation above. 
• Do not make use of global variables to pass information to a function: you must pass all information required 

by a function via arguments and/or keywords. 
• This gives 35 marks. 

 
• A validation function with arguments year (integer) and the output of the calibration function that returns a 

dictionary or Pandas df containing the goodness of fit metric achieved in validation and other appropriate datasets that 
you can use to visualise the validation results.  

• It should read the datasets T and Q from their CSV files for year, performing any necessary filtering or gap-
filling (e.g. replace NaN values).  

• It should get the snow cover dataset p for year from the function developed for snow data preparation above. 
• It should compare the model-predicted and measured values of Q and provide appropriate summary statistics 

of the goodness of fit for the validation.  
• Do not make use of global variables to pass information to a function: you must pass all information required 

by a function via arguments and/or keywords. 
• This gives 10 marks. 

 
• Outside of this function, in a notebook cell, you must demonstrate the running of these functions for the years 2018 

and 2019, using one as calibration and the other validation.  
• You must provide appropriate visualization of the measured and modelled data sets. 
• You must present the model parameters derived from the calibration. 
• You must present summary statistics (goodness of fit) for both the calibration and validation. 
• You must present a short paragraph of text describing the calibration and validation results. 
• Optionally, you might also illustrate the LUT operation.  
• This gives 15 marks (35+10+15 = 60%) 

 
 
3.2.3 Advice on development of the snow cover dataset 
 
You will want to use the MODIS product MOD10A1 for the snow data for the years 2018 and 2019, though you might 
additionally look into the use of MYD10A1. You should apply the catchment boundary vector dataset you will find in the file 
data/Hydrologic_Units/HUC_Polygons.shp to clip your region of interest, specifying the warp arguments and 
other parameters as follows: 
 
    sds     = ['NDSI_Snow_Cover'] 
    product = 'MOD10A1' 
    tile = ['h09v05'] 
 
    warp_args = { 
      'dstNodata'     : 255, 
      'format'        : 'MEM', 
      'cropToCutline' : True, 
      'cutlineWhere'  : f"HUC=13010001", 
      'cutlineDSName' : 'data/Hydrologic_Units/HUC_Polygons.shp' 
    } 
 
You can the use a high-level function such as modisAnnual as previously in the notes to gather the dataset for the two years of 
interest, but that if you do, the marks you get for that part of the code development will be limited to a pass grade. You can get 
more marks by developing, documenting and commenting your own codes for the MODIS processing. 



That said, the first time you go through the coursework, we recommend you do use a high-level function such as this to make 
sure that you can complete this part of the coursework. If can later return and develop your own code, in which case you will 
have a previous result you can check yours against. You will get more credit for codes that show more coding skills that just 
calling these high level codes. You should only submit one version of the codes you develop. 
 
You will use one year for model calibration and the other for model validation. As the dataset may have gaps, you might use the 
regularisation approach we have taken previously for LAI to fill the gaps. The dataset you produce for each year should have 
365 days of snow cover data (or 366 for leap years). It should broadly look like the example shown above. If your dataset 
appears too 'spikey', it may well be that you have forgotten to apply the regularisation/gap filling. 
 
You might find additional visualisations of interest, such as the space-time plots we did for the LAI time series visualisations. 
 
 
4. Coursework Submission 
 
The due date for Part B (this piece of work) is 10 Jan 2023 (first Monday of term). Part B represents 50% of final mark for the 
course. Submission is through the usual Turnitin link on the course Moodle page. 
 
You must develop and run the codes in a single Jupyter notebook, and submit the work in a single notebook as a PDF file. 
 
You must work individually on these tasks. If you do not, it will be treated as plagiarism. By reading these instructions for this 
exercise, we assume that you are aware of the UCL rules on plagiarism. You can find more information on this matter in your 
student handbook. If in doubt about what might constitute plagiarism, ask the course convener. 
 
	


